
Towards an Abstract Service Architecture for Multi-
Agent Systems

 Jonathan Dale Margaret Lyell
 Fujitsu Laboratories of America MITRE Corporation
 jdale@fla.fujitsu.com mlyell@mitre.org

Abstract
One of the common advantages of the agent paradigm is that it
can deal with whatever technologies are appropriate to achieve
their intended goals. In terms of interacting with services, this
means being able to deal with the current set of Web Service
technologies, as well as DAML-S, the GRID, etc. Each of these
service technologies has different structures, formats,
requirements and goals which can make it difficult to provide
relationships between them. The work presented in this paper
defines an abstract service architecture which is being developed
as part of the FIPA software agent standard in which multiple
service technologies can be expressed; agents can then use this
architecture to provide points of commonality between different
service technologies.

Keywords Web Services, DAML-S, Agents. FIPA, Service
Architecture

1. Introduction
Over the past few years, legacy applications have become Web-
enabled to allow for browser (human) access to data. A current
trend is to wrapper legacy applications with Web Services
technologies to allow for (machine) data exchange between legacy
applications and software clients. This is one of the current
technology iterations of making computer information
automatically processable by software; there are others, such as
the Semantic Web, the GRID, etc.

The software agent paradigm has been put forth as being
appropriate for the software engineering of complex, loosely
coupled systems [1]. As more application software is developed
that utilizes software agents as components, it is likely that a need
to expose various functional parts of such applications as services
will arise. Support for such services requires the development of a
communications framework consisting of, amongst other things,
data formats, transport protocols, communication interactions, etc.

The Foundation for Intelligent Physical Agents (FIPA) is a
standardisation effort for describing the framework of
communication between agents to allow software to interoperate
across the Internet. In the present set of FIPA specifications1, the
concept of a service is defined in the FIPA Agent Management
Specification [2], primarily through a data structure type of entity
known as the FIPA Service Description. However, general issues
have arisen as to how services should be represented and how
these services should be described, for example, complications
occur when the service is composite. Also, the FIPA Service
Description does not provide the scope for an adequate
description of a service.

To help address these inadequacies and also to help provide a
common framework in which all service models and service

1 See http://www.fipa.org/

technologies can be represented, the FIPA Services Technical
Committee is working towards the development of an abstract
architecture for Services. An abstract architecture is on in which
only the essential components are described and their
relationships without any explicit use of or reference to a specific
technology. Such an architecture allows the designers to focus on
the overall design and interaction of the system without becoming
involved in technical details. From the abstract service
architecture, the FIPA Services Technical Committee will also
produce a number of reifications, which are concrete realizations
of the abstract architecture, initially for WSDL and DAML-S.

In this paper, we aim to describe the abstract service architecture
that the FIPA Services TC has developed and show how it can be
used to represent and express other service technologies. In
section 2, we briefly discuss the current service manifestations of
Web Services and DAML-S. This is done in order to provide
background for Section 3, which discusses the current status of
FIPA specifications with regard to agent-based services, some
issues and relationships to the extant service approaches. A
snapshot of the current work on the abstract service
architecture is presented in Section 4. Future directions are
discussed in the final section.

2. Current Service Paradigms
The service concept is germane to many current technologies,
including Jini™, software agents, the Grid and the Semantic Web
with DAML-S, as well as the area of contemporary Web
Services with its representative technologies of SOAP, UDDI,
WSDL, BPEL4WS. While each of these technologies has a
distinct focal point, there is overlap in the application areas that
they purport to serve. Furthermore, the continued evolution and
maturation of these technologies may lead to convergence.

2.1 Web Services
The current instantiation of what is commonly known as Web
Services incorporates the range of technologies necessary to
provide for the discovery and invocation of services. The message
format used in service invocation is described by the Simple
Object Access protocol (SOAP) [3] and a description of the
message interface for a particular service is given in its (publicly
accessible) Web Service Description Language (WSDL) [4]
interface file. The WSDL description contains the binding
information for the particular service.

Services can be registered and discovered by using the Universal
Description, Discovery, and Integration (UDDI) [5] registry.
There is a connection between a service's description in the UDDI
registry and its WSDL file(s) which are facilitated by specific data
structures. Through the businessService data structure, a service is
registered in the UDDI. Information on how/where the service is
accessed is provided by a service's bindingTemplate and a service
may have more than one bindingTemplate. The WSDL interface

information for a service is associated with a tModel data structure
in the UDDI registry. The bindingTemplate contains a reference to
the tModel.

The UDDI registry also provides for service advertisement
through the use of entries in a categoryBag data structure. The
entries can be attribute/value pairs which can refer to industry
standard information. However, the usage scenarios involving the
UDDI registry do not focus on dynamic discovery of a service by
a client. This is a critical aspect of service discovery in multi-
agent systems where agents may need to find services
dynamically and compare different service offering sets at
different points in time.

Service composition is the process of building new services from
the combination of existing services and is being addressed by the
Business Process Execution Language for Web Services
(BPEL4WS) [6] that represents the newest area of activity for
Web Services. In BPEL4WS a composite service uses the WSDL
files of its constituent services to provide a description of its
message interface.

2.2 DAML-S
DAML-S is based on DAML+OIL and is an ontology for services
[8]. In the DAML-S upper ontology, a Service must provide
information on what it does, how it works and how it can be
accessed. This is formalized through the classes of ServiceProfile,
ServiceModel and ServiceGrounding, respectively. There are two
cardinality constraints associated with DAML-S which is that
there can be only one ServiceModel and there must be at least one
ServiceGrounding.

Service usage is via a ProcessModel which describes the inner
workings of a service, but there is no specified linkage between
the ServiceProfile and the ProcessModel, so care must be taken to
avoid inconsistencies. At present, there are three types of
processes: Atomic (can be invoked and appears to be a single
service to user), Composite (decomposable into other processes
and services) and Simple (abstract). The ProcessControl ontology
is needed in order to provide for execution and monitoring of
service requests2.

The DAML-S specification makes it clear that the language is
intended to be used in conjunction with a suitable planning
language, such as ConGolog [8]. Such a language would make use
of the pre- and post-conditions specified in the service to assist in
both automatically selecting services to help complete a plan and
composing services (the post-conditions of one service would
form the pre-conditions of another, compatible, service).

2.3 Services in FIPA
The FIPA Service Description in the FIPA Agent Management
Specification [2] gives the current viewpoint of how services are
viewed in the context of FIPA agents. What is implicit in this
specification is that agents will be both the providers and users of
agent-based services. Agent-based services are advertised with the
Directory Facilitator (DF) which is a mandatory agent on an
FIPA-compliant agent platform that provides service registry
functions.

2 At the time of writing, the development of the ProcessModel in DAML-
S is not yet complete.

The FIPA Service Description data structure details the type of
information that can be provided to advertise an agent-based
service. It includes a description for owner, name and type of the
service as well as the interaction protocols, ontologies and agent
content languages that the agent offering the service can utilize.
Finally, a list of properties in the form of attribute/value pairs
describes service-specific information.

There are shortcomings with the current FIPA service description.
The properties list is the structure that hosts the description of
what a service offers and the lack of structure in this list makes it
impossible to capture hierarchical relationships that could be
required for proper definition. For example, there is no support for
hosting a description of where to access additional descriptive
information regarding the service and there is a lack of grounding
facilities for multiple service technologies. This leads to questions
such as the following which are not currently addressed by FIPA:

• How can a FIPA service description support a description
that would be appropriate for a service that is to be
advertised in both the FIPA Directory Facilitator and a UDDI
registry?

• How can a service description be expressed both in DAML-S
and as a FIPA service description?

2.4 Analysis
With regard to Web Services, DAML-S provides a semantically
higher level and richer way of describing services than appears in
either WSDL or in the descriptions in a UDDI registry. The
WSDL interface descriptions correspond to a description of the
message needed to invoke a service which is conceptually closer
to the ServiceGrounding in DAML-S. The ServiceProfile of
DAML-S provides a semantically meaningful description of
services, as compared with that put forth by the data structures in
the UDDI registry. However, DAML-S and related work does not
provide a registry specification for hosting DAML-S service
information. The DAML-S ServiceModel and ProcessModel are
related to the efforts of BPEL4WS in the world of Web Services
since the use of component services in BPEL4WS is described by
WSDL type documents.

Within FIPA, it is an agent that offers the agent-based service. At
present, the scope of Service Description registration is on the
agent's home platform and on any other federated FIPA-compliant
platform. This is a more restricted forum than that proposed by
either the Web Services or Semantic Web (DAML-S) visions.
However, it is recognized that early users of Web Services might
be Intranets within organizational units. This is consistent with the
scope of agent-based services on agent platforms.

Reiterating, it is an agent that offers the agent-based service. The
service is not conflated with the agent's identity. A particular
agent could offer multiple services. Communication with a FIPA-
compliant software agent is via a FIPA Agent Communication
Language (FIPA ACL) message, with content that is expressed in
a suitable agent content language. Sufficiently expressive agent
content languages enable content that can be reasoned over, with
ontological support. This is qualitatively quite different from the
specification of an interface in WSDL containing the method
name and parameters necessary to invoke a service. Should all
users of an agent-based service required to be agents?

FIPA agents could utilize lessons learned in the use of DAML-S,
in particular, with regard to reasoning in support of service
selection. Also, the organization of an evolved FIPA Service
Description can benefit by consideration of the DAML-S effort.

With regard to the service grounding and actual service
utilization, it is Web Services that are in the forefront. The WSDL
service description distinguishes between the interface description
of a service, and the implementation, or grounding. If an agent-
based service is not going to be accessed simply via an ACL
message with the appropriate content (expressed in an agent
language), then provision must be made for a description of the
service grounding.

3. Abstract Service Architecture
The FIPA Abstract Service Architecture is currently under
development and the initial efforts which were made at the
Palermo, Italy meeting in February, 2003 have been aimed at
characterizing the service components and its relationships.

3.1 Structure
During this initial work, we identified the following abstract
components (see Figure 1) of a Service Description:

• Service Interface. This is the interface of the service defined
in terms of Actions each with a distinct Signature.

• Service Identifier. This is a globally unique identifier for a
particular service instance.

• Service Meta-Information. This is a description of the
service, such as its application domain, owner, etc.

• Service Grounding. This is a set of groundings of the service
for various service technologies.

• Service Process Model. This is a description of the process
steps that the service goes through to achieve its actions;
there is one process model for each Action.

• Service Semantic. This is a semantic description of the
actions of the service that other software can use in trying to
determine the function and capabilities of the service.

Also, we have identified a number of roles in the Abstract Service
Architecture which can manipulate services:

• Provider. The provider of a service or set of services; each
service offering has a service description which can be
published in a registry.

• Requestor. The user of a service; typically invoked by
querying a registry and then analyzing a service’s service
description.

• Registry. A directory service where service descriptions of
providers can be published and subsequently queried by
requestors.

• Monitor. A control function which can monitor the status of
a service invocation.

3.2 Operation
A Service Description is logically divided into two categories, that
dealing with semantic information on the meaning of the service
and that dealing with the service grounding. By analyzing this
information, a user or software is then able to obtain information
on why and how the service should be used.

A Service Description has a Service Semantic that comprises a
Semantic Signature and Pre- and Post-Conditions; these allow for
more advanced semantic interpretation and reasoning about the
Service than its Service Interface alone. Ontologies assist in the

Figure 1: Abstract Service Architecture

interpretation of the Service, since the Pre- and Post-Conditions
of the Service Semantic as well as the Action of the Service
Interface refer to them. Rules, associated with the Ontologies, can
give additional information on the context in which the
ontological information is appropriate. For example, a withdrawal
from a bank account can occur only if the fund balance exceeds
the withdrawal amount.

Services can be composed to provide more complex services. An
agent acting in the composer role can inspect registered Services,
which implies that the composer agent is inspecting services that
involve the same (or overlapping) ontologies. For example,
consider two services, A and B. In order to generate a third
service, C, the post conditions of A must be acceptable as the pre-
conditions of B. This is assessed using the information associated
with the Service Semantic of A and B. However, due to the
complexity of this process, the composition operation might not
be performed at run-time (and may be beyond the capabilities of
current software engineering practices). Rather, agents who
fulfilled the composer role would traverse the registered services,
inspecting the Service Semantic and Service Interface information,
generating potentially useful composed services, perhaps in
collaboration with user intervention. Thus, the composer agents
can help to automate the process of leveraging the already extant
service assets of the enterprise.

The orchestrator role for an agent, which involves the execution
of composed services, has not yet been introduced into the
Abstract Service Architecture but will be the subject of future
efforts. Reflection upon the orchestrator role is likely to yield
insight into the distinctions between the concepts of agents and
services.

4. Conclusions and Future Directions
Extensions to the current state of the FIPA Abstract Service
Architecture that will incorporate service composition and
orchestration are planned for the near term. A reworking of the
FIPA Service Description that provides at least a minimal
supporting structure to convey grounding information is
necessary. Actual service groundings will not be addressed until
after these conceptual tasks are completed.

Two sets of specifications are planned:

• Abstract Service Specification. This is a more complete
description of the Abstract Service Architecture and how it is
intended to function. It will also provide groundings for
service technologies such as DAML-S and Web Services as
exemplars of the system.

• FIPA Service Description Specification. This is a set of
extensions to the current FIPA Agent Management
specification that addresses some of the existing criticisms
mentioned in section 2.3.

This activity of the FIPA Service TC, an eighteen months effort,
started in February, 2003 and is planned to be completed by April,
2004.

ACKNOWLEDGEMENTS
The authors would like to thank all of the participants of the FIPA
Services TC that helped to refine the initial Abstract Service
Architecture proposal at the Palermo, Italy meeting during
February, 2003.

REFERENCES
[1] An Agent-based Approach for Building Complex Software

Systems, Jennings, N. In: Communications of the ACM,
44(4), pp 35-41, 2001.

[2] FIPA Agent Management Specification [FIPA00023].
Foundation for Intelligent Physical Agents, 2002.
http://www.fipa.org/

[3] SOAP Specification. World Wide Web Consortium, 2002.
http://www.w3.org/TR/soap12-part1/

[4] WSDL Specification. World Wide Web Consortium, 2002.
http://www.w3.org/TR/wsdl/

[5] UDDI Specification, OASIS, 2002.
http://www.uddi.org/specification.html

[6] BPEL4WS specification. IBM, 2002.
http://www.ibm.com/developerworks/library/ws-
bpel/

[7] DAML-S: Semantic Markup for Web Services. The DAML
Services Coalition, 2002.
http://www.daml.org/services/daml-s/0.7/

[8] ConGolog, a Concurrent Programming Language Based on
the Situation Calculus, De Giacomo, G., Lesperance, Y. and
Levesque, H. In: Artificial Intelligence, 1-2(121), pages 109-
169, 2000.
http://citeseer.nj.nec.com/degiacomo00congolog
.html

