
Introducing the Tileworld:
Experimentally Evaluating Agent Architectures

Martha E. Pollack

Arti�cial Intelligence Center and
Center for the Study of Language and Information

SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

Marc Ringuette

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We describe a system called Tileworld, which consists of a simulated robot agent
and a simulated environment which is both dynamic and unpredictable. Both the
agent and the environment are highly parameterized, enabling one to control certain
characteristics of each. We can thus experimentally investigate the behavior of var-
ious meta-level reasoning strategies by tuning the parameters of the agent, and can
assess the success of alternative strategies in di�erent environments by tuning the en-
vironmental parameters. Our hypothesis is that the appropriateness of a particular
meta-level reasoning strategy will depend in large part upon the characteristics of the
environment in which the agent incorporating that strategy is situated. We describe
our initial experiments using Tileworld, in which we have been evaluating a version of
the meta-level reasoning strategy proposed in earlier work by one of the authors [5].

Topic: Automated Reasoning
Subtopics: Planning and Scheduling, Resource-Bounded Reasoning,

Experimental Evaluation of Planning Systems

0yThis research was supported by the O�ce of Naval Research under Contract No. N00014{85{C{0251, by
a contract with the Nippon Telegraph and Telephone Corporation and by a gift from the System Development
Foundation.

1 Introduction

Recently there has been a surge of interest in systems that are capable of intelligent be-
havior in dynamic, unpredictable environments. Because agents inevitably have bounded
computational resources, their deliberations about what to do take time, and so, in dy-
namic environments, they run the risk that things will change while they reason. Indeed,
things may change in ways that undermine the very assumptions upon which the reasoning
is proceeding. The agent may begin a deliberation problem with a particular set of available
options, but, in a dynamic environment, new options may arise, and formerly existing op-
tions disappear, during the course of the deliberation. An agent that blindly pushes forward
with the original deliberation problem, without regard to the amount of time it is taking or
the changes meanwhile going on, is not likely to make rational decisions.

One solution that has been proposed eliminates explicit execution-time reasoning by
compiling into the agent all decisions about what to do in particular situations [1, 6, 12].
This is an interesting endeavor whose ultimate feasibility remains an open question, but we
and others believe that in complex domains, the exclusive use of compilation techniques is
impractical [8, 9, 14].

An alternative is to design agents that perform explicit reasoning at execution time, but
manage that reasoning by engaging in meta-level reasoning. Within the past few years,
researchers in AI have provided theoretical analyses of meta-level reasoning, often applying
decision-theoretic notions to it [3, 11, 15]. In addition, architectural speci�cations for agents
performing meta-level reasoning have been developed [5], and prototype systems that engage
in meta-level reasoning have been implemented [7, 10]. The project we describe in this paper
involves the implementation of a system for experimentally evaluating competing theoretical
and architectural proposals.

More speci�cally, we have been constructing a system called Tileworld, which consists
of a simulated robot agent and a simulated environment which is both dynamic and unpre-
dictable. Both the agent and the environment are highly parameterized, enabling one to
control certain characteristics of each. We can thus experimentally investigate the behavior
of various meta-level reasoning strategies by tuning the parameters of the agent, and can
assess the success of alternative strategies in di�erent environments by tuning the environ-
mental parameters. Our hypothesis is that the appropriateness of a particular meta-level
reasoning strategy will depend in large part upon the characteristics of the environment in
which the agent incorporating that strategy is situated. We shall describe below how the
parameters of our simulated environment correspond to interesting characteristics of real,
dynamic environments.

In our initial experiments using Tileworld, we have been evaluating a version of the
meta-level reasoning strategy proposed in earlier work by one of the authors [5]. However,
the Tileworld can be used to evaluate a range of competing proposals, such as the ones
mentioned above: agents instantiating many alternative proposals can readily be imported
into the Tileworld environment.

1

#

T T T T

2 2 T

2

5 T

5 T

5 T a T

T

T T T T

T # T T

T # # # #

T

T T T T

#

T # #

T # # # # #

#

T T

T T T

#

a = agent, # = obstacle, T = tile, < digits > = hole

Figure 1: A Typical Tileworld Starting State

2 The Tileworld Environment

The Tileworld is a chessboard-like grid on which there are agents, tiles, obstacles, and holes.
An agent is a unit square which is able to move up, down, left, or right, one cell at a time.
A tile is a unit square which behaves like a tile: it slides, and rows of tiles can be pushed
by the agent. An obstacle is a group of grid cells which are immovable. A hole is a group
of grid cells, each of which can be \�lled in" by a tile when the tile is moved on top of the
hole cell; the tile and hole cell disappear, leaving a blank cell. If a hole becomes completely
�lled, the agent gets points for �lling it in. The agent knows ahead of time how valuable the
hole is; its overall goal is to get as many points as possible by �lling in holes.

A Tileworld simulation takes place dynamically: it begins in a state which is randomly
generated by the simulator according to a set of parameters, and changes continually over
time. Objects (holes, tiles, and obstacles) appear and disappear at rates determined by
parameters set by the experimenter, while at the same time the agent moves around and
pushes tiles into holes. The dynamic aspect of a Tileworld simulation distinguishes it from
many earlier domains that have been used for studying AI planning, such as blocks-world.

The Tileworld is a rough abstraction of the Robot Delivery Domain, in which a mobile
robot roams the halls of an o�ce delivering messages and objects in response to human
requests.1 We have been able to draw a fairly close correspondence between the two domains
(i.e., the appearance of a hole corresponds to a request, the hole itself corresponds to a

1Various projects at SRI have employed this domain, some of them also employing an actual mobile robot,
Flakey.

2

delivery location, tiles correspond to messages or objects, the agent to the robot, the grid to
hallways, and the simulator time to real time).

Features of the domain put a variety of demands on the agent. Its spatial complexity is
nontrivial: a simple hill-climbing strategy can have modest success, but when e�cient action
is needed, more extensive reasoning is necessary. But the time spent in reasoning has an
associated cost, both in lost opportunities and in unexpected changes to the world; thus the
agent must make tradeo�s between speed and accuracy, and must monitor the execution of
its plans to ensure success. Time pressures also become signi�cant as multiple goals vie for
the agent's attention.

The Tileworld can be a good test of an agent's abilities to behave intelligently in a
dynamic, unpredictable environment. But a single Tileworld simulation, however interesting,
will give only one data point in the design space of robot agents. To explore the space more
vigorously, we must be able to vary the challenges that the domain presents to the agent.
We have therefore parameterized the domain, and provided \knobs" which can be adjusted
to set the values of those parameters.

The knob settings control the evolution of a Tileworld simulation. Some of the knobs
were alluded to earlier, for instance, those that control the frequency of appearance and
disappearance of each object type. Other knobs control the number and average size of each
object type. Still other knobs are used to control factors such as the shape of the distribution
of scores associated with holes, or the choice between the instantaneous disappearance of
a hole and a slow decrease in value (a hard bound versus a soft bound). By adjusting
the knobs, one can allow conditions to vary from something resembling an unconstrained
football �eld to something like a crowded maze, or from a �xed puzzle to constantly changing
chaos. For each set of parameter settings, an agent can be tested on tens or hundreds of
randomly-generated runs automatically. Agents can be compared by running them on the
same set of pseudo-random worlds; the simulator is designed to minimize noise and preserve
�ne distinctions in performance. We will describe the form of an experiment more precisely
in a later section.

3 Using Plans To Constrain Future Reasoning

The agent we have implemented and used in our experiments instantiates an architecture
for meta-level reasoning presented in [5]. The architecture builds on observations made by
Bratman [4] that agents who are situated in dynamic environments bene�t from having plans
because their plans can constrain the amount of subsequent reasoning they need to perform.
Two constraining roles of plans will concern us here 2:

� An agent's plans focus subsequent means-end reasoning so that the agent can, in
general, concentrate on elaborating its existing plans, rather than on computing all
possible courses of action that might be undertaken.

� An agent's plans restrict the set of further potential courses of action it needs to give
full consideration to, by �ltering out options that are inconsistent with the performance
of what it already plans to do.

2Additional constraining roles have also been postulated [4, 13].

3

The �rst role of plans has always been at least implicit in the standard models of AI planning:
AI planners compute means to goals that the agent already has. The second has a more
dramatic e�ect on the architecture we are investigating: it leads to the introduction of a
�ltering mechanism, which manages execution time reasoning by restricting deliberation, in
general, to options that are compatible with the performance of already intended actions. (To
have the desired e�ect of lessening the amount of reasoning needed, the �ltering mechanism
must be computationally inexpensive, relative to the cost of deliberation.)

Of course, a rational agent cannot always remain committed to its existing plans. Some-
times plans may be subject to reconsideration or abandonment in light of changes in belief.
But if an agent constantly reconsiders its plans, they will not limit deliberation in the way
they need to. Thus, an agent's plans should be reasonably stable.

To achieve stability while at the same time allowing for reconsideration of plans when
necessary, the �ltering mechanism should have two components. The �rst checks a new
option for compatibility with the existing plans. The second, an override mechanism, encodes
the conditions under which some portion of the existing plans is to be suspended and weighed
against some other option. The �lter override mechanism operates in parallel with the
compatibility �lter. For a new option to pass through the �lter, it must either pass the
compatibility check or else trigger an override by matching one of the conditions in the
override mechanism.

An agent's �lter override mechanism must be carefully designed to embody the right
degree of sensitivity to the problems and opportunities that arise in its environment. If the
agent is overly sensitive, willing to reconsider its plans in response to every unanticipated
event, then its plans will not serve su�ciently to limit the number of options about which it
must deliberate. On the other hand, if the agent is not sensitive enough, it will fail to react
to signi�cant deviations from its expectations.

The options that pass through the �lter are subject to deliberation. The deliberation
process is what actually selects the actions the agent will form intentions towards. In other
words, it is the deliberation process that performs the type of decision-making that is the
focus of traditional decision theory. The �ltering mechanism thus serves to frame particular
decision problems, which the deliberation process then solves.

The process of deliberation is di�erent from means-ends reasoning in our view, and this
distinction is worth discussing further. As we see it, deliberation is deciding which of a set
of options to pursue, while means-ends reasoning is more a process of determining how to
achieve a given goal. We see means-ends reasoning producing options (candidate plans to
achieve a goal), which can then be the subject of deliberation.

This may be a surprising distinction to those familiar with the standard AI planning
paradigm, in which the job of a planner is usually to produce the single best plan according
to some set of criteria. Any deliberation which is to be done in such a system is done by
the planner, and it could be argued that a planner is the best place for such reasoning.
Certainly some pruning of alternatives must be done in the planner; however, there are
reasons to believe that some deliberation belongs outside the planner. In some situations
it is appropriate to have several means-ends reasoners with di�erences in solution quality
and time required; these must be invoked appropriately and a single solution chosen. In
other circumstances it is desirable to engage in a decision-theoretic analysis of competing
alternatives. Consequently, we have maintained the distinction between deliberation and

4

means-ends reasoning in our system.

4 The Tileworld Agent

The Tileworld agent was constructed to test some of the ideas discussed in the previous sec-
tion. We therefore made some strong commitments in our design: the agent will make plans;
it will maintain an intention structure, represented as a time-ordered set of tree-structured
plans, to which the agent is fairly strongly committed; it will periodically reason about
the status of its intentions; and this reasoning process will include the �ltering mechanism
discussed above.

We are interested in situations in which an agent has enough time to conduct signi�cant
reasoning, but little enough time that the cost of reasoning must be taken into account. In
such situations, it is highly advantageous for the agent to be able to engage in reasoning
while carrying out an action previously decided upon. We have therefore chosen to allow our
agent to simultaneously reason about what to do, and perform actions and perceive changes
in its environment. Our model is of a robot with two sets of processing hardware. One
processor executes a short control cycle (the act cycle), acting on previously formulated plans
and monitoring the world for changes. The second processor executes a longer cycle (the
reasoning cycle) which permits computations with lengths of up to several seconds. Although
this model incurs a certain cost in the complexity of synchronizing the two processes, it allows
for a balance of computational
exibility and reactivity. We feel that this is a sensible choice
for the design of a real mobile robot, but in our current system we simulate the concurrency
for the sake of convenience.

The act cycle is straightforward; the agent performs those acts that have been identi�ed
during the previous reasoning cycle, monitoring for limited kinds of failures. Perception also
occurs during the act cycle: the agent can access a global map of the world that indicates
the locations of all objects, as well as the score and time remaining to timeout for all holes.3

The reasoning cycle makes decisions about what goals to pursue and how to pursue them.
The portion of the agent architecture that controls reasoning is depicted in Figure 2. As
illustrated there, new options for consideration can come from two sources. First, the agent
may perceive environmental changes that suggest new options|in Tileworld, this occurs
when new holes or tiles appear. Second, options may be suggested by a means-end reasoner,
the bulk of which is a special-purpose route planner. The means-end reasoner suggests plans
that can serve as means to already intended ends. For example, it may suggest moving to
a certain location in order to push a particular tile into some hole, when the �lling of that
hole is a component of the agent's current intention structure.

Options from both sources are then theoretically subject to �ltering. We have so far
con�ned �ltering to top-level options, i.e., options to �ll a particular hole. However, at least
some extensions to subordinate options are obvious: for example, the use of a particular tile
to �ll one hole should be �ltered as incompatible when there already exists a plan to use
that tile for a di�erent hole.

Recall that the �ltering mechanism must determine whether an option is compatible with
the agent's existing plans. If it is incompatible, it must also determine whether it triggers an

3We plan in the future to investigate more-local perception strategies.

5

Environment

---------- |

| Means- | V

---> | Ends | ------------

| | Reasoner | | Perception |

| ---------- ------------

| | |

| V V

| ---------------------

| | Filtering Mechanism |

----------- ---------------------

| Intention |--------- |

Action <---- | Structure | | |

----------- V V

^ ----------------------

| | Deliberation Process |

| ----------------------

|_________________|

Figure 2: Tileworld Agent Architecture

override, that is, whether it is potentially important enough that the agent should nonetheless
consider it.

Compatibility checking of top-level options as implemented to date is very simplistic. If
the agent has a current intention to �ll a particular hole (say, hole N) right now, then it
is the case that �lling any other hole M right now will be incompatible with the existing
intention. The option to �ll hole M now will not survive the compatibility �lter. Thus,
deliberation about whether to abandon work on N , and instead work on M , will depend
upon the override mechanism.

In the simplest version of the override mechanism, a threshold level is set to some constant
v, which represents the increase in score value that the new hole must have over the old one
to be worthy of further consideration. Recall that triggering an override will not necessarily
result in the agent's abandoning its currently executing plan; that depends upon the details
of the deliberation component, described below. However, if (score(M)� score(N)) <= v,
then the agent will not even consider abandoning its �lling of N , and will defer without
further consideration attempts to �ll M . Notice that if we set the threshold value to �1,
deliberation will occur whenever the environment changes in such a way as to provide a new
potential option. It is useful to introduce some terminology from Bratman et al.: when an
agent is very sensitive to its environment, willing to reconsider its plans in response to a
wide range of events, we say that it is cautious. If it tends instead to \stick to its guns"
regardless of what is happening in the surrounding environment, we say that it is bold. For
a Tileworld agent, the lower the threshold value, the more cautious it is.

Options that survive the �ltering mechanism are then subject to deliberation. In the
example we have been describing, assume that �llingM now survives the �ltering mechanism.
Then it is necessary to deliberate about whether in fact to adopt that intention, and begin

6

work on �lling M , or whether to continue with the current plan of �lling N . Alternative
deliberation strategies can be chosen in Tileworld by the setting of a parameter. We currently
have implemented two deliberation modules.

The simpler deliberation module evaluates competing top-level options by selecting the
one with the higher potential score. Thus, when the threshold parameter for the override
mechanism is nonnegative, this mode of deliberation will always select the new competing
option over the one that was previously held. With negative threshold values, it will al-
ways select the already executing action. This illustrates a general point: if deliberation is
extremely simple, it may be redundant to posit separate deliberation and �ltering processes.

A slightly more sophisticated deliberation strategy estimates the subjective expected
utility (SEU) of a top-level goal. For a given option to �ll a hole M , SEU is estimated as
a function of score(M), time available to �ll M , distances of the agent and available tiles
from M , and the size of M ; these factors can be combined into an improved measure of
the likelihood of success of �lling M in the time allotted. More speci�cally, our current
SEU-estimator function is:

SEU(h) =
score(h)

dist(a; h) + tileavail(h)

The function dist(x; y) represents the distance between two locations on the grid: in this
case, a is the agent, and h the hole. T ileavail(h) is de�ned as:

tileavail(h) =
nX

i=1

2 � dist(ti; h)

where ti is the i
th nearest hole to h, and n is the size of h. Informally, tileavail(h) represents

the total distance the agent will have to travel, once it is at or near h, to complete its task
of �lling the hole. The distance to each of the nearest n tiles is multiplied by 2 because the
agent must make a round trip, traveling to each tile to reach it, and then pushing it back
to the hole. Our current SEU-estimator does not take into account the amount of time left
until the hole times out.

With this more sophisticated mode of deliberation, the agent may decide to continue
with its current plan to �ll N , even if �lling M has a higher potential score; this will occur
if the �lling of N is expected to take signi�cantly less time.

We intend to design additional deliberation modules, including one that simulates com-
plete means-end reasoning for options under consideration.

5 Experiments With Our Agent

With both the simulator and the agent in place, we are in a position to conduct experimental
studies of the the performance of the agent. By adjusting the Tileworld \knobs", we can
control a number of domain characteristics. We can vary what we call dynamism (the rate at
which new holes appear), hostility (the rate at which obstacles appear), variability of utility
(di�erences in hole scores), variability of di�culty (di�erences in hole sizes and distances
from tiles), and hard/soft bounds (holes having either hard timeouts or gradually decaying in

7

value). There are also variables we can adjust in the agent: act/think rate (the relative speeds
of acting and thinking), the �lter's threshold level, and the sophistication of the deliberation
mechanism.

Experiment 1

To begin with, we set all of these parameters to provide a baseline environment which is
dynamic, variable, and moderately paced. In this environment, a competent agent can
achieve reasonable scores, but is penalized for wasting time or making poor choices. We will
start by comparing the simple deliberation mechanism, based on score value, with the SEU
evaluator, which provides a better estimate of marginal utility. For orientation, we have also
included the results of a human playing the role of the agent in the same simulation; and to
gain an idea of the bene�t of acting in parallel with reasoning, we have included results for
an agent that that acts and reasons serially.

All of these agents were tested in the baseline environment and in a similar, but more
rapidly changing one. In the faster environment, objects appear and disappear on the average
ten times more quickly, but the agent can also move ten times more quickly. However,
the agent's reasoning takes place at the same rate of speed as in the baseline case, so the
opportunity cost of reasoning is correspondingly greater in the faster environment. The
agents were all evaluated by taking the average score from 30 trials; the human performed
10. Each trial is a self-contained simulation with a duration of 5000 ticks of the clock.4

Experiment 1

Agent SEU SEU/serial Simple Simple/serial Human

normal speed 396 353 347 291 468
10x faster 256 234 183 152 3

The di�erences here are quite apparent. In the normal speed environment, the human
subject performed best. This resulted from his having more-sophisticated planning capabil-
ities than the robot agent. But in the faster environment, the human's planning \tricks"
were insu�cient, and he could not keep up with the pace of change.

The robot agents were better able to adjust to the more rapidly changing environments,
but it is clear that the cost of reasoning is still signi�cant for them. This is evident both
from an overall decrease in score in the high-speed environment, and from the superiority of
the robot agents that could reason and act in parallel.

The other distinction of note is that the SEU evaluator performs better than the simple
evaluator, as we might expect.

Experiment 2

We now move on to our early results in a continuing series of experiments directed at under-
standing some of the design tradeo�s in our agent. The use of Tileworld to experimentally
evaluate our agent architecture is an ongoing project, and we describe these initial results
primarily to point out emerging trends. We stress that the hypotheses presented below are

4The agent can move once per clock tick.

8

preliminary; signi�cantly more experimentation and statistical analysis of the results needs
to take place before we can make strong claims about the relative appropriateness of any
particular agent-design strategy.

In Experiment 2, we attempt to test the usefulness of the �ltering mechanism in our
agent as implemented, using the SEU evaluator as the deliberation component, and using
the most quickly computed evaluation metric, thresholding on the score value, as the �lter
override mechanism. We vary the threshold from -100 to 100. Since the score for each hole
ranges from 1 to 100, a threshold setting of -100 means that every new option is subject to
deliberation (a strategy of extreme caution), while a setting of 100 means that no new option
will ever be considered until the currently executing plan is complete (extreme boldness). The
resulting scores are summarized in the following table, with each number again representing
an average over 30 trials.

Experiment 2

Threshold -100 -75 -50 -25 0 25 50 75 100
100x slower 434 434 433 427 422 400 405 398 398
normal speed 396 413 393 409 404 398 388 381 371
10x faster 256 265 264 241 251 233 255 251 266

At the slowest speed setting, 100 times slower than our \normal" setting, it is better to do
no �ltering at all (extreme caution). The scores achieved at this speed decrease monotonically
as the threshold is increased. At the normal speed setting, the e�ect of increased �ltering
still appears to be negative, but less markedly so. At the fast setting, there seems to be little
correlation between threshold level and performance, although the uncertainty in the results,
which appears to be in the range of 10-20 points, prevents a sure determination. We hope,
in the future, to be able to make even these relatively subtle determinations; the noise in the
data comes, we believe, largely from our decision to use actual CPU-time measurements to
determine reasoning time. If we wish to get the cleanest trials possible, we may need to use
a time estimate that does not depend on the vagaries of the underlying machine and Lisp
system. Failing that, we will need to model the uncertainty involved, and run larger trial
sets.

To sum up the results of this experiment, we see that �ltering is harmful at slow speeds,
and even at high speeds does not give a net bene�t. Our hypothesis is that the time cost
of the SEU evaluator is not very high, and consequently, it is usually worth taking the
time to engage in extra deliberation about new opportunities. The fact that �ltering is less
detrimental in the faster environment leads us to hypothesize that there may be a break-
even point at even faster speeds, above which �ltering is useful; we intend to test for such a
point. We also intend to implement more accurate (and costly) deliberation mechanisms in
the near future. For these, �ltering may be much more valuable; perhaps the SEU-estimator
is e�cient enough that it can itself be used as the �lter override mechanism for the more
complex deliberation components.

Experiment 3

We speculated that the SEU-estimator, as described in Section 4, may be de�cient in an im-
portant way: it does not consider the time cost of means-end reasoning already performed.

9

Consequently, in our third experiment, we modi�ed the deliberation functions by adding a
bias in favor of existing intentions, since typically at deliberation time, some means-end rea-
soning about how to achieve these has already taken place. This is distinct from Experiment
2, in which we adjusted the �ltering mechanism in an attempt to save deliberation time;
here we investigate a bias in the deliberation process itself with the intent of reducing the
time cost of means-end reasoning.

We consider two cases. In the �rst, deliberation is done by the simple evaluator, and we
apply a bias towards existing intentions equal to a �xed number of points. In the second,
deliberation is done by the SEU evaluator, and we apply a bias equal to a fraction of the
current SEU. Thus, for example, with a 100% bias, a newly appearing hole must have double
the SEU of the current one to be adopted as a new intention. The environment settings and
simulation sizes are the same as for Experiment 2.

Experiment 3

SEU Evaluation

Bias (percent) 0 25 50 100 200
100x slower 434 427 412 423 417
normal speed 404 385 399 392 394
10x faster 259 243 259 252 250

Simple Evaluation

Bias (points) 0 25 50 75 100
100x slower 352 354 355 351 354
normal speed 347 372 369 363 359
10x faster 183 187 174 203 192

As shown by the experimental results, bias in the deliberator does not appear to have
a clear e�ect on total performance. For the simple evaluator this isn't terribly surprising;
it provides a fairly weak assessment of a hole's actual potential value in any case. We
expected to see much more e�ect of bias on the SEU evaluator, however. Two hypotheses
are available to explain this. First, our test environment may have too many opportunities
available, minimizing the potential cost of high bias: if the agent spends most of its time
doing something with high utility, a few missed opportunities will not have a signi�cant
impact on the �nal score. This hypothesis can be tested in a less favorable environment.
Second, it may be the case that means-end reasoning in the current implementation is too
inexpensive, minimizing the potential bene�t of high bias. This hypothesis can be tested by
increasing the size of the environment to increase the planning time required; the addition
of more complex planning routines would also provide situations in which there is a higher
time cost associated with planning.

6 Conclusion

The experiments we have run to date have included some important milestones in the Tile-
world e�ort. The Tileworld domain has been demonstrated, and has been shown to be a
viable system for evaluating agent architectures. The Tileworld agent was demonstrated and
used to test di�ering deliberation and �ltering strategies as described in [5].

10

We continue to investigate the question of how an agent should structure and control its
computational e�ort. We believe that the architecture discussed here is a special case of a
more general framework, and we are working towards a de�nition of that framework and its
veri�cation in our domain. We also see the Tileworld testbed as a good basis for comparison
of other agent architectures proposed in the literature, and we strongly encourage other
researchers to demonstrate their agents in our domain.5

The goal of our experiments is an improved understanding of the relation between agent
design and environmental factors. In the future, when faced with a performance domain for
an agent, one should be able to draw on such an understanding to choose more wisely from
the wide range of implementation possibilities available.

5The Tileworld domain is relatively clean and portable, is written in CommonLisp, and is available
electronically over the Internet from Marc Ringuette by sending electronic mail to mnr@cs.cmu.edu.

11

References

[1] P. E. Agre and D. Chapman. Pengi: An implementation of a theory of activity. In
AAAI-87, Proceedings of the National Conference on Arti�cial Intelligence, Seattle,
Wa., 1987.

[2] J. Blythe and T. M. Mitchell. On Becoming Reactive. In Proceedings of the 6th Inter-
national Workshop on Machine Learning, Cornell University, June 1989.

[3] M. Boddy and T. Dean. Solving time-dependent planning problems. In Proceedings
of the Eleventh International Joint Conference on Arti�cial Intelligence, Detroit, MI,
1989.

[4] M. E. Bratman. Intention, Plans and Practical Reason. Harvard University Press,
Cambridge, Ma., 1987.

[5] M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded practical
reasoning. Computational Intelligence, 4:349-355, 1988.

[6] R. A. Brooks. Planning is just a way of avoiding �guring out what to do next. Technical
Report 303, MIT, 1987.

[7] P. R. Cohen, M. L Greenberg, D. M. Hart, and A. E. Howe. Real-time problem solving
in the Phoenix environment. In Proceedings of the Workshop on Real-Time Arti�cial
Intelligence Problems, Detroit, MI, 1989.

[8] B. D'Ambrosio and M. Fehling. Resource bounded-agents in an uncertain world. In
Proceedings of the AAAI Symposium on Limited Rationality, Stanford, Ca., 1989.

[9] J. Doyle. Arti�cial intelligence and rational self-government. Technical Report CS-88-
124, Carnegie Mellon University, Pittsburgh, Pa., 1988.

[10] M.P. George� and F.F. Ingrand. Decision-making in an embedded reasoning system.
In Proceedings of the International Joint Conference on Arti�cial Intelligence, Detroit,
Mi., 1989.

[11] E. J. Horvitz. Reasoning about beliefs and actions under computational resource con-
straints. In Proceedings of the 1987 Workshop on Uncertainty in Arti�cial Intelligence,
Seattle, WA, 1987.

[12] L. P. Kaelbling. Goals as parallel program speci�cations. In AAAI-88, Proceedings of
the Seventh National Conference on Arti�cial Intelligence, Saint Paul, Minnesota, 1988.

[13] M. E. Pollack. Overloaded expectations. In preparation, 1990.

[14] J.L. Pollock. Oscar: A general theory of rationality. In Proceedings of the AAAI
Symposium on Limited Rationality, Stanford, Ca., 1989.

12

[15] S. J. Russell and E. H. Wefald. Principles of metareasoning. In Proceedings of the First
International Conference on Principles of Knowledge Representation and Reasoning,
Toronto, 1989.

13

