
Deductive
Reasoning

Agents

The 'traditional' approach to building artificially intelligent systems, known as
symbolic Al, suggests that intelligent behaviour can be generated in a system by
giving that system a symbolic representation of its environment and its desired
behaviour, and syntactically manipulating this representation. In this chapter, we
focus on the apotheosis of this tradition, in which these symbolic representa-
tions are logical formulae, and the syntactic manipulation corresponds to logical
deduction, or theorem-proving.

I will begin by giving an example to informally introduce the ideas behind deduc-
tive reasoning agents. Suppose we have some robotic agent, the purpose of which
is to navigate around an office building piclung up trash. There are many possible
ways of implementing the control system for such a robot - we shall see several
in the chapters that follow - but one way is to give it a description, or represen-
tation of the environment in which it is to operate. Figure 3.1 illustrates the idea
(adapted from Konolige (1986, p. 15)).

RALPH is an autonomous robot agent that operates in a real-world
environment of corridors and big blocks. Sensory input is from a video
camera; a subsystem labelled 'interp' in Figure 3.1 translates the video
feed into an internal representation format, based on first-order logic.

48 Deductive Reasoning Agents

Interp

Pixel stuff

Knowledge basel
beliefs:

Dist(me, d I) = 3ft
Door(d 1)

Action
Brake!

DOOR TO ROOM 3.07

Figure 3.1 A robotic agent that contains a symbolic description of its environment.

The agent's information about the world is contained in a data struc-
ture which for historical reasons is labelled as a 'knowledge base' in
Figure 3.1.

In order to build RALPH, it seems we must solve Mo key problems.

(1) The transduction problem. The problem of translating the real world into an
accurate, adequate symbolic description of the world, in time for that descrip-
tion to be useful.

(2) The representation/reasoning probIem. The problem of representing infor-
mation symbolically, and getting agents to manipulate/reason with it, in time
for the results to be useful.

The former problem has led to work on vision, speech understanding, learning,
etc. The latter has led to work on knowledge representation, automated reasoning,
automated planning, etc. Despite the immense volume of work that the problems
have generated, many people would argue that neither problem is anywhere near
solved. Even seemingly trivial problems, such as common sense reasoning, have
turned out to be extremely difficult.

Agents as Theorem Provers 49

Despite these problems, the idea of agents as theorem provers is seductive.
Suppose we have some theory of agency - some theory that explains how an intel-
ligent agent should behave so as to optimize some performance measure (see
Chapter 2). This theory might explain, for example, how an agent generates goals
so as to satisfy its design objective, how it interleaves goal-directed and reac-
tive behaviour in order to achieve these goals, and so on. Then this theory cp
can be considered as a specification for how an agent should behave. The tradi-
tional approach to implementing a system that will satisfy this specification would
involve refining the specification through a series of progressively more concrete
stages, until finally an implementation was reached. In the view of agents as the-
orem provers, however, no such refinement takes place. Instead, g? is viewed as
an executable specification: it is directly executed in order to produce the agent's
behaviour,

Agents as Theorem Provers
To see how such an idea might work, we shall develop a simple model of logic-
based agents, which we shall call deliberate agents (Genesereth and Nilsson, 1987,
Chapter 13). In such agents, the internal state is assumed to be a database of
formulae of classical first-order predicate logic. For example, the agent's database
might contain formulae such as

It is not difficult to see how formulae such as these can be used to represent the
properties of some environment. The database is the information that the agent
has about its environment. An agent's database plays a somewhat analogous role
to that of belief in humans. Thus a person might have a belief that valve 22 1 is
open - the agent might have the predicate O p e n (v a l v e 2 2 1) in its database. Of
course, just like humans, agents can be wrong. Thus I might believe that valve 221
is open when it is in fact closed; the fact that an agent has O p e n (v a l v e 2 2 1) in its
database does not mean that valve 221 (or indeed any valve) is open. The agent's
sensors may be faulty, its reasoning may be faulty, the information may be out
of date, or the interpretation of the formula O p e n (v a l v e 2 2 1) intended by the
agent's designer may be something entirely different.

Let L be the set of sentences of classical first-order logic, and let D = , p (L) be
the set of L databases, i.e. the set of sets of L-formulae. The internal state of an
agent is then an element of D. We write A, A1,. . . for members of D. An agent's
decision-malung process is modelled through a set of deduction rules, p . These
are simply rules of inference for the logic. We write A I-, g? if the formula cp
can be proved from the database A using only the deduction rules p. An agent's

5 0 Deductive Reasoning Agents

Func t i on : A c t i o n Sel e c t i o n as Theorem Prov i ng
1. f u n c t i o n a c t i o n (A : D) r e t u r n s an a c t i o n A c
2. beg in
3 . f o r each oc E A C do
4 . i f A F, Do(oc) t hen
5 . r e t u r n oc
6. e n d - i f
7 . end- fo r
8 . f o r each o c ~ A c do
9 . i f A #, -Do(oc) t hen
10. r e t u r n oc
11. end- i f
12. end- fo r
13. r e t u r n n u l l
14. end func t i on a c t i o n

Figure 3.2 Action selection as theorem-proving.

perception function see remains unchanged:

see : S - P e r .

Similarly, our n e x t function has the form

n e x t : D x P e r - D.

It thus maps a database and a percept to a new database. However, an agent's
action selection function, which has the signature

a c t i o n : D - A c ,

is defined in terms of its deduction rules. The pseudo-code definition of this func-
tion is given in Figure 3.2.

The idea is that the agent programmer will encode the deduction rules p and
database A in such a way that if a formula D o (@) can be derived, where oc
is a term that denotes an action, then oc is the best action to perform. Thus,
in the first part of the function (lines (3)-(7)), the agent takes each of its pos-
sible actions oc in turn, and attempts to prove the formula Do(oc) from its
database (passed as a parameter to the function) using its deduction rules p.
If the agent succeeds in proving Do(oc) , then oc is returned as the action to be
performed.

What happens if the agent fails to prove Do(oc), for all actions a E Ac? In t h s
case, it attempts to find an action that is consistent with the rules and database,
i.e. one that is not explicitly forbidden. In lines (8)-(12), therefore, the agent
attempts to find an action a E A c such that 1Do(oc) cannot be derived from

Agents as Theorem Provers 5 1

dirt dirt

Figure 3.3 Vacuum world.

its database using its deduction rules. If it can find such an action, then t h s is
returned as the action to be performed. If, however, the agent fails to find an
action that is at least consistent, then it returns a special action nul l (or noop),
indicating that no action has been selected.

In this way, the agent's behaviour is determined by the agent's deduction rules
(its 'program') and its current database (representing the information the agent
has about its environment).

To illustrate these ideas, let us consider a small example (based on the vacuum
cleaning world example of Russell and Norvig (1995, p. 51)). The idea is that we
have a small robotic agent that will clean up a house. The robot is equipped with a
sensor that will tell it whether it is over any dirt, and a vacuum cleaner that can be
used to suck up dirt. In addition, the robot always has a definite orientation (one of
nor th , rou t h, east , or west). In addition to being able to suck up dirt, the agent
can move forward one 'step' or turn right 90". The agent moves around a room,
which is divided grid-like into a number of equally sized squares (conveniently
corresponding to the unit of movement of the agent). We will assume that our
agent does nothing but clean - it never leaves the room, and further, we will
assume in the interests of simplicity that the room is a 3 x 3 grid, and the agent
always starts in grid square (0,O) facing north.

To summarize, our agent can receive a percept d i r t (signifying that there is dirt
beneath it), or nu l l (indicating no special information). It can perform any one of
three possible actions: f o r w a r d , suck, or t u r n . The goal is to traverse the room
continually searching for and removing dirt. See Figure 3.3 for an illustration of
the vacuum world.

52 Deductive Reasoning Agents

First, note that we make use of three simple domain predicates in this exercise:

In(x, y) agent is at (x, y) ,

D i r t (x , y) therc is dirt at (x, y),

Fac ing (d) the agent is facing direction d.

Now we specify our nex t function. This function must look at the perceptual
information obtained from the environment (either d i r t or null) , and generate a
new database whichincludes this information. But, in addition, it must remove old
or irrelevant information, and also, it must try to figure out the new location and
orientation of the agent. We will therefore specify the nex t function in several
parts. First, let us write old(A) to denote the set of 'old' information in a database,
which we want the update function nex t to remove:

old(A) = {P(t l , . . ., t,) I P E { In ,Di r t ,Fac ing} and P (t l , . .. , t,) E A).

Next, we require a function new, which gives the set of new predicates to add to
the database. This function has the signature

The definition of t h s function is not difficult, but it is rather lengthy, and so we
will leave it as an exercise. (It must generate the predicates I n (. . .), describing the
new position of the agent, Fac ing(. . .) describing the orientation of the agent,
and D i r t (. . .) if dirt has been detected at the new position.) Given the new and
old functions, the nex t function is defined as follows:

nex t (A, p) = (A \ old(A)) u new (A, p).

Now we can move on to the rules that govern our agent's behaviour. The deduction
rules have the form

cp(-. .) - W (. * .),

where cp and q are predicates over some arbitrary list of constants and variables.
The idea being that if cp matches against the agent's database, then (CI can be
concluded, with any variables in q instantiated.

The first rule deals with the basic cleaning action of the agent: this rule will take
priority over all other possible behaviours of the agent (such as navigation):

Hence, if the agent is at location (x, y) and it perceives dirt, then the prescribed
action will be to suck up dirt. Otherwise, the basic action of the agent will be to
traverse the world. Takmg advantage of the simplicity of our environment, we will
hardwire the basic navigation algorithm, so that the robot will always move from
(0,O) to (0 , l) to (0,Z) and then to (1,2), (1,1) and so on. Once the agent reaches

Agents a s Theorem Provers 5 3

(2 , 2) , it must head back to (0,O). The rules dealing with the traversal up to (0,2)
are very simple:

In(0,O) A F a c i n g (n o r t h) A lD i r t (0 ,O) - Do(f o r w a r d) , (3.5)
I n (0 , l) A F a c i n g (n o r t h) A l D i r t (0 , l) - DO(f o r w a r d) , (3.6)
In(O,2) A F a c i n g (n o r t h) A dirt (O,2) - D o (t u r n) , (3 . 7)

In(O,2) A Fac ing(eas t) - Do(f o r w a r d) . (3.8)

Notice that in each rule, we must explicitly check whether the antecedent of rule
(3.4) fires. T h s is to ensure that we only ever prescribe one action via the Do(. . .)
predmte. Similar rules can easily be generated that will get the agent to (2 , 2),
and once at (2 ,2) back to (0,O). It is not difficult to see that these rules, together
with the n e x t function, will generate the required behaviour of our agent.

At this point, it is worth stepping back and examining the pragmatics of the
logrc-based approach to building agents. Probably the most important point to
make is that a literal, naive attempt to build agents in this way would be more
or less entirely impractical. To see why, suppose we have designed out agent's
rule set p such that for any database A, if we can prove Do(@), then a is an
optimal action - that is, a is the best action that could be performed when the
environment is as described in A. Then imagine we start running our agent. At
time 11, the agent has generated some database A l , and begins to apply its rules
p in order to find which action to perform. Some time later, at time t2, it manages
to establish A1 F, D o (a) for some a E Ac, and so a is the optimal action that
the agent could perform at time t l . But if the environment has changed between
tl and t2, then there is no guarantee that a will still be optimal. It could be far
from optimal, particularly i f much time has elapsed between t l and t 2 . If t 2 - tl
is infinitesimal - that is, if decision making is effectively instantaneous - then we
could safely disregard this problem. But in fact, we know that reasoning of the
kind that our logic-based agents use will be anythng but instantaneous. (If our
agent uses classical first-order predicate logic to represent the environment, and
its rules are sound and complete, then there is no guarantee that the decision-
making procedure will even terminate.) An agent is said to enjoy the property of
calculative rationality if and only if its decision-mahng apparatus will suggest
an action that was optimal when the decision-making process began. Calculative
rationality is clearly not acceptable in environments that change faster than the
agent can make decisions - we shall return to this point later.

One might argue that this problem is an artefact of the pure logic-based
approach adopted here. There is an element of truth in ths . By moving away from
strictly logical representation languages and complete sets of deduction rules, one
can build agents that enjoy respectable performance. But one also loses what is
arguably the greatest advantage that the logical approach brings: a simple, elegant
logical semantics.

There are several other problems associated with the logical approach to agency.
First, the see function of an agent (its perception component) maps its environ-

54 Deductive Reasoning Agents

ment to a percept. In the case of a logic-based agent, t h s percept is likely to be
symbolic - typically, a set of formulae in the agent's representation language. But
for many environments, it is not obvious how the mapping from environment
to symbolic percept might be realized. For example, the problem of transform-
ing an image to a set of declarative statements representing that image has been
the object of study in A1 for decades, and is still essentially open. Another prob-
lem is that actually representing properties of dynamic, real-world environments
is extremely hard. As an example, representing and reasoning about temporal
information - how a situation changes over time - turns out to be extraordinar-
ily difficult. Finally, as the simple vacuum-world example illustrates, representing
even rather simple procedural knowledge (i.e. knowledge about 'what to do') in
traditional logic can be rather unintuitive and cumbersome.

To summarize, in logic-based approaches to building agents, decision making
is viewed as deduction. An agent's 'program' - that is, its decision-malung strat-
egy - is encoded as a logical theory, and the process of selecting an action reduces
to a problem of proof. Logic-based approaches are elegant, and have a clean (log-
ical) semantics - wherein lies much of their long-lived appeal. But logic-based
approaches have many disadvantages. In particular, the inherent computational
complexity of theorem-proving makes it questionable whether agents as theorem
provers can operate effectively in time-constrained environments. Decision mak-
ing in such agents is predicated on the assumption of calculative rationality - the
assumption that the world will not change in any significant way whle the agent
is deciding what to do, and that an action which is rational when decision making
begins will be rational when it concludes. The problems associated with repre-
senting and reasoning about complex, dynamic, possibly physical environments
are also essentially unsolved.

Agent-Oriented Programming
Yoav Shoham has proposed a 'new programming paradigm, based on a societal
view of computation' whch he calls agent-oriented programming. The key idea
which informs AOP is that of directly programming agents in terms of mentalistic
notions (such as belief, desire, and intention) that agent theorists have developed
to represent the properties of agents. The motivation behnd the proposal is that
humans use such concepts as an abstraction mechanism for representing the
properties of complex systems. In the same way that we use these mentalistic
notions to describe and explain the behaviour of humans, so it might be useful to
use them to program machines. The idea of programming computer systems in
terms of mental states was articulated in Shoham (1993).

The first implementation of the agent-oriented programming paradigm was the
AGENT0 programming language. In this language, an agent is specified in terms
of a set of capabilities (things the agent can do), a set of initial beliefs, a set of
initial commitments, and a set of commitment rules. The key component, whch

Agent-Oriented Programming 5 5

determines how the agent acts, is the commitment rule set. Each commitment
rule contains a message condition, a mental condition, and an action. In order to
determine whether such a rule fires, the message condition is matched against
the messages the agent has received; the mental condition is matched against the
beliefs of the agent. If the rule fires, then the agent becomes committed to the
action.

Actions in Agent0 may be private, corresponding to an internally executed sub-
routine, or communicative, i.e. sending messages. Messages are constrained to be
one of three types: 'requests' or 'unrequests' to perform or refrain from actions,
and 'inform' messages, whlch pass on information (in Chapter 8, we will see that
this style of communication is very common in multiagent systems). Request and
unrequest messages typically result in the agent's commitments being modified;
inform messages result in a change to the agent's beliefs.

Here is an example of an Agent0 commitment rule:

COMMIT(
(agent, REQUEST, DO(time, ac t i on)
) , ; ; ; msg c o n d i t i o n
(B,

[now, F r i end agent] AND
CAN(se1 f , a c t i on) AND
NOT [ti me, CMT(se1 f , anyac t i on)]

) , ; ; ; mental c o n d i t i o n
s e l f ,
DO(time, ac t i on))

This rule may be paraphrased as follows:

i f I receive a message from agen t which requests me to do ac t ion at
t i m e , and I believe that

agen t is currently a friend;

I can do the action;

at t i m e , 1 am not committed to doing any other action,

then commit to doing ac t ion at t ime .

The operation of an agent can be described by the following loop (see Figure 3.4).

(1) Read all current messages, updating beliefs - and hence commitments -
where necessary.

(2) Execute all commitments for the current cycle where the capability condition
of the associated action is satisfied.

5 6 Deductive Reasoning Agents

I
messages in

f

update .$

beliefs
L 1

i ' update
\

commitments"
-

'l 1

beliefs I
commitments u

abilities El

\ ,
I , Q messages out +

internal actions

Figure 3.4 The flow of control in AgentO.

It should be clear how more complex agent behaviours can be designed and
built in AgentO. However, it is important to note that thls language is essentially a
prototype, not intended for building anything like large-scale production systems.
But it does at least give a feel for how such systems might be built.

3.3 Concurrent MetateM
The Concurrent MetateM language developed by Michael Fisher is based on the
direct execution of logical formulae. In this sense, it comes very close to the 'ideal'
of the agents as deductive theorem provers (Fisher, 1994). A Concurrent MetateM
system contains a number of concurrently executing agents, each of which is able
to communicate with its peers via asynchronous broadcast message passing. Each
agent is programmed by giving it a temporal logic specification of the behaviour
that it is intended the agent should exhibit. An agent's specification is executed
directly to generate its behaviour. Execution of the agent program corresponds
to iteratively building a logical model for the temporal agent specification. It is

Concurrent MetateM 57

possible to prove that the procedure used to execute an agent specification is
correct, in that if it is possible to satisfy the specification, then the agent will do
so (Barringer et al., 1989).

Agents in Concurrent MetateM are concurrently executing entities, able to com-
municate with each other through broadcast message passing. Each Concurrent
MetateM agent has two main components:

an interface, which defines how the agent may interact with its environment
(i.e. other agents); and

a computational engine, whch defines how the agent will act - in Concurrent
MetateM, the approach used is based on the MetateM paradigm of executable
temporal logic (Barringer et al., 1989).

An agent interface consists of three components:

a unique agent identifier (or just agent id), whch names the agent;

a set of symbols defining whch messages will be accepted by the agent -
these are termed environment propositions; and

a set of symbols defining messages that the agent may send - these are
termed component propositions.

For example, the interface definition of a 'stack' agent might be

s tack(pop, p u s h) [popped, f ull].

Here, s tack is the agent id that names the agent, {pop, p u s h) is the set of envi-
ronment propositions, and {popped, f ul l) is the set of component propositions.
The intuition is that, whenever a message headed by the symbol pop is broadcast,
the stack agent will accept the message; we describe what this means below. If
a message is broadcast that is not declared in the s tack agent's interface, then
stack ignores it. Similarly, the only messages that can be sent by the s tack agent
are headed by the symbols popped and fu l l .

The computational engine of each agent in Concurrent MetateM is based on the
MetateM paradigm of executable temporal logics (Barringer et al., 1989). The idea
is to directly execute an agent specification, where this specification is given as a
set of program rules, whch are temporal logic formulae of the form:

antecedent about past consequent about present and future.

The antecedent is a temporal logic formula referring to the past, whereas the
consequent is a temporal logic formula referring to the present and future. The
intuitive interpretation of such a rule is 'on the basis of the past, construct the
future', which gives rise to the name of the paradigm: declarative past and imper-
ative future (Gabbay, 1989). The rules that define an agent's behaviour can be
animated by directly executing the temporal specification under a suitable oper-
ational model (Fisher, 1995).

5 8 Deductive Reasoning Agents

Table 3.1 Temporal connectives for Concurrent MetateM rules.

Operator Meaning

cp is true 'tomorrow'
g, was true 'yesterday'
at some time in the future, cp
always in the future, g,
at some time in the past, p
always in the past, g,
g, will be true until r ~ /
g, has been true since ry
g, is true unless c~
g, is true zince cV

To make the discussion more concrete, we introduce a propositional temporal
logic, called Propositional MetateM Logic (PML), i'n which the temporal rules that
are used to specify an agent's behaviour will be given. (A complete definition of
PML is given in Barringer et al. (1989).) PML is essentially classical propositional
logic augmented by a set of modal connectives for referring to the temporal order-
ing of events.

The meaning of the temporal connectives is quite straightforward: see Table 3.1
for a summary. Let p and ly be formulae of PML, then: Ocp is satisfied at the
current moment in time (i.e. now) if p is satisfied at the next moment in time;
Op is satisfied now if p is satisfied either now or at some future moment in time;
047 is satisfied now if p is satisfied now and at all future moments; p U ly is
satisfied now if ly is satisfied at some future moment, and p is satisfied until
then - ?/V is a binary connective similar to U , allowing for the possibility that
the second argument might never be satisfied.

The past-time connectives have similar meanings: 0 p and 0 p are satisfied
now if cp was satisfied at the previous moment in time - the difference between
them is that, since the model of time underlying the logic is bounded in the past,
the beginning of time is treated as a special case in that, when interpreted at the
beginning of time, 0 p cannot be satisfied, whereas p will always be satisfied,
regardless of p; Q p is satisfied now if p was satisfied at some previous moment
in time; .p is satisfied now if p was satisfied at all previous moments in time;
p S cy is satisfied now if ly was satisfied at some previous moment in time, and
p has been satisfied since then - 2 is similar, but allows for the possibility that
the second argument was never satisfied; finally, a nullary temporal operator can
be defined, whch is satisfied only at the beginning of time - t h s useful operator
is called 'start'.

To illustrate the use of these temporal connectives, consider the following
examples:

0 i m p o r t a n t (a g e n t s)

Concurrent MetateM 5 9

means 'it is now, and will always be true that agents are important'.

0 i m p o r t a n t (Jan ine)

means 'sometime in the future, Janine will be important'.

means 'we are not friends until you apologize'. And, finally,

means 'tomorrow (in the next state), you apologize'.
The actual execution of an agent in Concurrent MetateM is, superficially at least,

very simple to understand. Each agent obeys a cycle of trying to match the past-
time antecedents of its rules against a history, and executing the consequents
of those rules that 'fire'. More precisely, the computational engine for an agent
continually executes the following cycle.

(1) Update the history of the agent by receiving messages (i.e. environment
propositions) from other agents and adding them to its history.

(2) Check whch rules fire, by comparing past-time antecedents of each rule
against the current history to see whch are satisfied.

(3) Jointly execute the fired rules together with any commitments carried over
from previous cycles.

T h s involves first collecting together consequents of newly fired rules with
old commitments - these become the current constraints. Now attempt to
create the next state whle satisfying these constraints. As the current con-
straints are represented by a disjunctive formula, the agent will have to
choose between a number of execution possibilities.

Note that it may not be possible to satisfy all the relevant commitments on
the current cycle, in which case unsatisfied commitments are carried over
to the next cycle.

Clearly, step (3) is the heart of the execution process. Making the wrong choice at
t h s step may mean that the agent specification cannot subsequently be satisfied.

When a proposition in an agent becomes true, it is compared against that agent's
interface (see above); if it is one of the agent's component propositions, then that
proposition is broadcast as a message to all other agents. On receipt of a message,
each agent attempts to match the proposition against the environment proposi-
tions in their interface. If there is a match, then they add the proposition to their
history.

60 Deductive Reasoning Agents

rp (ask1 , ask2) [g ive l ,g ive2] :
O a s k l 3 Ggivel;
O a s k 2 =. Ggive2;

start 3 U l (g i v e 1 A give2) .

r c l (g i v e 1) [a s k l] :
start =. ask l ;

O a s k l =. a s k l .

rc2(askl1give2)[ask2] :
0 (ask l A l a s k 2) ask2.

- - - --

Figure 3.5 A simple Concurrent MetateM system.

Time Agent

r P r c l r c 2

0 . ask1
1. ask1 ask1 ask2
2. a s k l , a s k 2 , g i v e l a s k l
3. ask l 'g ive2 a s k l ' g i v e l ask2
4. a s k l , a s k 2 , g i v e l ask1 give2
5.

Figure 3.6 An example run of Concurrent MetateM.

Figure 3.5 shows a simple system containing three agents: r p , r c l , and rc2.
The agent r p is a 'resource producer': it can 'give' to only one agent at a time,
and will commit to eventually g i v e to any agent that asks. Agent r p will only
accept messages a s k l and ask2, and can only send g i v e l and give2 messages.
The interface of agent r c l states that it will only accept g i v e l messages, and can
only send a s k l messages. The rules for agent r c 1 ensure that an as k l message
is sent on every cycle - t h s is because start is satisfied at the beginning of time,
thus firing the first rule, so O a s k l will be satisfied on the next cycle, thus fir-
ing the second rule, and so on. Thus r c l asks for the resource on every cycle,
using an a s k l message. The interface for agent r c2 states that it will accept
both a s k l and give2 messages, and can send as k2 messages. The single rule
for agent r c 2 ensures that an ask2 message is sent on every cycle where, on its
previous cycle, it did not send an ask2 message, but received an a s k l message
(from agent r c l) . Figure 3.6 shows a fragment of an example run of the system
in Figure 3.5.

Concurrent MetateM

S n o w W h i t e (a s k) [g i v e] :
O a s k (x)

g i v e (x) A g i v e (?)

eager (g i v e) [a s k] :
start

O g i v e (e a g e r)

g r e e d y (g i v e) [a s k] :
start

c o u r t e o u s (g i v e) [a s k] :
((- a s k (c o u r t e o u s) S g i v e (e a g e r)) ~
(~ a s k (c o u r t e o u s) S g i v e (g r e e d y)))

s h y (g i v e) [a s k] :
start

O a s k (x)
O g i v e (s h y)

Ogiv e (x)
(x = Y)

Figure 3.7 Snow White in Concurrent MetateM.

Exercises
(1) [Level 2.1 (The following few questions refer to the vacuum-world example.)

Give the full definition (using pseudo-code if desired) of the n e w function, which
defines the predicates to add to the agent's database.

(2) [Level 2.1

Complete the vacuum-world example, by filling in the missing rules. How intuitive do
you think the solution is? How elegant is it? How compact is it?

(3) [Level 2.1
'l'ry using your favourite (imperative) programming language to code a solution to

the basic vacuum-world example. How do you think it compares with the logical solu-
tion? What does this tell you about trying to encode essentially procedural knowledge
(i.e. knowledge about what action to perform) as purely logical rules?

(4) [Level 2.1

If you are familiar with Prolog, try encoding the vacuum-world example in this language
and running it with randomly placed dirt. Make use of the a s s e r t and r e t r a c t meta-
level predicates provided by Prolog to simplify your system (allowing the program itself
to achieve much of the operation of the next function).

(5) [Level 2.1

Try scaling the vacuum world up to a 10 x 10 grid size. Approximately how many rules
would you need to encode this enlarged example, using the approach presented above?
Try to generalize the rules, encoding a more general decision-making mechanism.

64 Deductive Reasoning Agents

(6) [Level 3.1

Suppose that the vacuum world could also contain obstacles, which the agent needs
to avoid. (Imagine it is equipped with a sensor to detect such obstacles.) Try to adapt
the example to deal with obstacle detection and avoidance. Again, compare a logic-based
solution with one implemented in a traditional (imperative) programming language.

(7) [Level 3.1

Suppose the agent's sphere of perception in the vacuum world is enlarged, so that it
can see the whole of its world, and see exactly where the dirt lay. In this case, it would be
possible to generate an optimal decision-making algorithm - one which cleared up the dirt
in the smallest time possible. Try and think of such general algorithms, and try to code
them both in first-order logic and a more traditional programming language. Investigate
the effectiveness of these algorithms when there is the possibility of noise in the perceptual
input the agent receives (i.e. there is a non-zero probability that the perceptual information
is wrong), and try to develop decision-making algorithms that are robust in the presence
of such noise. How do such algorithms perform as the level of perception is reduced?

(8) [Level 2.1
Consider the Concurrent MetateM program in Figure 3.7. Explain the behaviour of the

agents in this system.

(9) [Level 4.1

Extend the Concurrent MetateM language by operators for referring to the beliefs and
commitments of other agents, in the style of Shoham's AgentO.

(10) [Level 4.1

Give a formal semantics to AgentO and Concurrent MetateM.

Reactive and
Hybrid Agents

The many problems with symbolic/logical approaches to building agents led some
researchers to question, and ultimately reject, the assumptions upon which such
approaches are based. These researchers have argued that minor changes to the
symbolic approach, such as weakening the logical representation language, will
not be sufficient to build agents that can operate in time-constrained environ-
ments: nothng less than a whole new approach is required. In the mid to late
1980s, these researchers began to investigate alternatives to the symbolic A1
paradigm. It is difficult to neatly characterize these different approaches, since
their advocates are united mainly by a rejection of symbolic AI, rather than by a
common manifesto. However, certain themes do recur:

the rejection of symbolic representations, and of decision makmg based on
syntactic manipulation of such representations;

the idea that intelligent, rational behaviour is seen as innately linked to the
environment an agent occupies - intelligent behaviour is not disembodied,
but is a product of the interaction the agent maintains with its environment;

the idea that intelligent behaviour emerges from the interaction of various
simpler behaviours.

Alternative approaches to agency are sometime referred to as behavioural (since
a common theme is that of developing and combining individual behaviours), sit-
uated (since a common theme is that of agents actually situated in some environ-
ment, rather than being disembodied from it), and finally - the term used in this

90 Reactive and Hybrid Agents

chapter - reactive (because such systems are often perceived as simply reacting
to an environment, without reasoning about it).

5.1 Brooks and the Subsumption Architecture
T h s section presents a survey of the subsumption architecture, which is arguably
the best-known reactive agent architecture. It was developed by Rodney Brooks -
one of the most vocal and influential critics of the symbolic approach to agency
to have emerged in recent years. Brooks has propounded three key theses that
have guided his work as follows (Brooks, 1991b; Brooks, 1991a).

(1) Intelligent behaviour can be generated without explicit representations of
the kind that symbolic A1 proposes.

(2) Intelligent behaviour can be generated without explicit abstract reasoning
of the kind that symbolic A1 proposes.

(3) Intelligence is an emergent property of certain complex systems.

Brooks also identifies two key ideas that have informed his research.

(1) Situatedness and embodiment. 'Real' intelligence is situated in the world, not
in disembodied systems such as theorem provers or expert systems.

(2) Intelligence and emergence. 'Intelligent' behaviour arises as a result of an
agent's interaction with its environment. Also, intelligence is 'in the eye of the
beholder' - it is not an innate, isolated property.

These ideas were made concrete in the subsumption architecture. There
are two defining characteristics of the subsumption archtecture. The first is
that an agent's decision-making is realized through a set of task-accomplishing
behaviours; each behaviour may be thought of as an individual a c t i o n function,
as we defined above, which continually takes perceptual input and maps it to
an action to perform. Each of these behaviour modules is intended to acheve
some particular task. In Brooks's implementation, the behaviour modules are
finite-state machines. An important point to note is that these task-accomplishing
modules are assumed to include no complex symbolic representations, and are
assumed to do no symbolic reasoning at all. In many implementations, these
behaviours are implemented as rules of the form

situation - action,

which simply map perceptual input directly to actions.
The second defining characteristic of the subsumption archtecture is that

many behaviours can 'fire' simultaneously. There must obviously be a mecha-
nism to choose between the different actions selected by these multiple actions.
Brooks proposed arranging the modules into a subsumption hierarchy, with the

Brooks and the Subsumption Architecture

Function: Act ion Se lec t ion i n t he Subsumption A rch i t ec tu re
1. func t i on action(p : P) : A
2 . var f i red : @ (R)
3 . var selected : A
4. begi n
5 . f i r ed - { (c , a) I (c , a) E R and p E C]

6. f o r each (c , a) E fired do
7 . i f 7(3(c ' , a ') E fired such t h a t (c1,a') < (c , a)) then
8. r e tu rn a
9. end-i f
10. end-for
11. re tu rn null
1 2 . end funct ion action

Figure 5.1 Action Selection in the subsumption architecture.

behaviours arranged into layers. Lower layers in the herarchy are able to inhibit
higher layers: the lower a layer is, the hgher is its priority. The idea is that
higher layers represent more abstract behaviours. For example, one might desire
a behaviour in a mobile robot for the behaviour 'avoid obstacles'. It makes sense
to give obstacle avoidance a high priority - hence t h s behaviour will typically be
encoded in a low-level layer, whch has high priority. To illustrate the subsumption
architecture in more detail, we will now present a simple formal model of it, and
illustrate how it works by means of a short example. We then discuss its relative
advantages and shortcomings, and point at other similar reactive architectures.

The see function, whch represents the agent's perceptual ability, is assumed to
remain unchanged. However, in implemented subsumption architecture systems,
there is assumed to be quite tight coupling between perception and action - raw
sensor input is not processed or transformed much, and there is certainly no
attempt to transform images to symbolic representations.

The decision function act ion is realized through a set of behaviours, together
with an inhibition relation holding between these behaviours. A behaviour is a pair
(c, a), where c G P is a set of percepts called the condition, and a E A is an action.
A behaviour (c, a) will fire when the environment is in state s E S if and only if
see(s) E c. Let Beh = (c, a) I c E P and a E A) be the set of all such rules.

Associated with an agent's set of behaviour rules R c Beh is a binary inhibition
relation on the set of behaviours: i G R x R. Ths relation is assumed to be a strict
total ordering on R (i.e. it is transitive, irreflexive, and antisymmetric). We write
bl + b2 if (bl , b2) E+, and read this as 'bl inhibits bz', that is, bl is lower in the
hierarchy than b2, and will hence get priority over b2. The action function is then
as shown in Figure 5.1.

Thus action selection begins by first computing the set f i r e d of all behaviours
that fire (5) . Then, each behaviour (c, a) that fires is checked, to determine whether
there is some other hgher priority behaviour that fires. If not, then the action part
of the behaviour, a, is returned as the selected action (8). If no behaviour fires,

9 2 Reactive and Hybrid Agents

then the distinguished action null will be returned, indicating that no action has
been chosen.

Given that one of our main concerns with logic-based decision malung was
its theoretical complexity, it is worth pausing to examine how well our simple
behaviour-based system performs. The overall time complexity of the subsump-
tion action function is no worse than 0 (n", where n is the larger of the number
of behaviours or number of percepts. Thus, even with the naive algorithm above,
decision malung is tractable. In practice, we can do much better than this: the
decision-malung logic can be encoded into hardware, giving constant decision
time. For modern hardware, t h s means that an agent can be guaranteed to select
an action within microseconds. Perhaps more than anything else, this computa-
tional simplicity is the strength of the subsumption architecture.

Steels's Mars explorer experiments
We will see how subsumption architecture agents were built for the following
scenario (this example is adapted from Steels (1990)).

The objective is to explore a distant planet, more concretely, to collect
samples of a particular type of precious rock. The location of the rock
samples is not known in advance, but they are typically clustered in
certain spots. A number of autonomous vehicles are available that can
drive around the planet collecting samples and later reenter a mother
ship spacecraft to go back to Earth. There is no detailed map of the
planet available, although it is known that the terrain is full of obsta-
cles - hills, valleys, etc. - which prevent the vehicles from exchanging
any communication.

The problem we are faced with is that of building an agent control archtecture for
each vehicle, so that they will cooperate to collect rock samples from the planet
surface as efficiently as possible. Luc Steels argues that logic-based agents, of the
type we described above, are 'entirely unrealistic' for t h s problem (Steels, 1990).
Instead, he proposes a solution using the subsumption architecture.

The solution makes use of two mechanisms introduced by Steels. The first is
a gradient field. In order that agents can know in which direction the mother
ship lies, the mother ship generates a radio signal. Now t h s signal will obviously
weaken as distance from the source increases - to find the direction of the mother
ship, an agent need therefore only travel 'up the gradient' of signal strength. The
signal need not carry any information - it need only exist.

The second mechanism enables agents to communicate with one another. The
characteristics of the terrain prevent direct communication (such as message
passing), so Steels adopted an indirect communication method. The idea is that
agents will carry 'radioactive crumbs', which can be dropped, picked up, and
detected by passing robots. Thus if an agent drops some of these crumbs in a
particular location, then later another agent happening upon this location will be

Brooks and the Subsumption Architecture 9 3

able to detect them. Ths simple mechanism enables a quite sophsticated form
of cooperation.

The behaviour of an individual agent is then built up from a number of
behaviours, as we indicated above. First, we will see how agents can be pro-
grammed to individually collect samples. We will then see how agents can be
programmed to generate a cooperative solution.

For individual (non-cooperative) agents, the lowest-level behaviour (and hence
the behaviour with the hghest 'priority') is obstacle avoidance. This behaviour
can be represented in the rule:

if detect an obstacle then change direction. (5.1)

The second behaviour ensures that any samples carried by agents are dropped
back at the mother shp:

if carrying samples and at the base then drop samples; (5.2)

i f carrying samples and not at the base then travel up gradient. (5.3)

Behaviour (5.3) ensures that agents carrying samples will return to the mother
ship (by heading towards the origin of the gradient field). The next behaviour
ensures that agents will collect samples they find:

if detect a sample then pick sample up. (5.4)

The final behaviour ensures that an agent with 'nothing better to do' will explore
randomly:

if true then move randomly. (5.5)

The precondition of this rule is thus assumed to always fire. These behaviours are
arranged into the following herarchy:

The subsumption herarchy for t h s example ensures that, for example, an agent
will always turn if any obstacles are detected; if the agent is at the mother s h p
and is carrying samples, then it will always drop them if it is not in any immediate
danger of crashmg, and so on. The 'top level' behaviour - a random walk - will only
ever be carried out if the agent has nothing more urgent to do. It is not difficult to
see how t h s simple set of behaviours will solve the problem: agents will search
for samples (ultimately by searchng randomly), and when they find them, will
return them to the mother shp.

If the samples are distributed across the terrain entirely at random, then equip-
ping a large number of robots with these very simple behaviours will work
extremely well. But we know from the problem specification, above, that this is
not the case: the samples tend to be located in clusters. In t h s case, it makes
sense to have agents cooperate with one another in order to find the samples.

94 Reactive and Hybrid Agents

Thus when one agent finds a large sample, it would be helpful for it to communi-
cate this to the other agents, so they can help it collect the rocks. Unfortunately,
we also know from the problem specification that direct communication is impos-
sible. Steels developed a simple solution to this problem, partly inspired by the
foraging behaviour of ants. The idea revolves around an agent creating a 'trail'
of radioactive crumbs whenever it finds a rock sample. The trail will be created
when the agent returns the rock samples to the mother ship. If at some later point,
another agent comes across this trail, then it need only follow it down the gradient
field to locate the source of the rock samples. Some small refinements improve
the efficiency of this ingenious scheme still further. First, as an agent follows a
trail to the rock sample source, it picks up some of the crumbs it finds, hence
making the trail fainter. Secondly, the trail is only laid by agents returning to the
mother shp. Hence if an agent follows the trail out to the source of the nominal
rock sample only to find that it contains no samples, it will reduce the trail on the
way out, and will not return with samples to reinforce it. After a few agents have
followed the trail to find no sample at the end of it, the trail will in fact have been
removed.

The modified behaviours for t h s example are as follows. Obstacle avoidance
(5.1) remains unchanged. However, the two rules determining what to do if carry-
ing a sample are modified as follows:

if carrying samples and at the base then drop samples; (5 . 6)

if carrying samples and not at the base
then drop 2 crumbs and travel up gradient. (5.7)

The behaviour (5.7) requires an agent to drop crumbs when returning to base
with a sample, thus either reinforcing or creating a trail. The 'pick up sample'
behaviour (5.4) remains unchanged. However, an additional behaviour is required
for dealing with crumbs:

if sense crumbs then pick up 1 crumb and travel down gradient. (5 .8)

Finally, the random movement behaviour (5.5) remains unchanged. These be-
haviour are then arranged into the following subsumption hierarchy:

Steels shows how this simple adjustment acheves near-optimal performance in
many situations. Moreover, the solution is cheap (the computing power required
by each agent is minimal) and robust (the loss of a single agent will not affect the
overall system significantly).

Agre and Chapman - PENGI

At about the same time as Brooks was describing his first results with the sub-
sumption architecture, Chapman was completing h s Master's thesis, in which

Brooks and the Subsumption Architecture 9 5

he reported the theoretical difficulties with planning described above, and was
coming to similar conclusions about the inadequacies of the symbolic AI model
hmself. Together with h s co-worker Agre, he began to explore alternatives to the
AI planning paradigm (Chapman and Agre, 1986).

Agre observed that most everyday activity is 'routine' in the sense that it
requires little - if any - new abstract reasoning. Most tasks, once learned, can
be accomplished in a routine way, with little variation. Agre proposed that an
efficient agent architecture could be based on the idea of 'running arguments'.
Crudely, the idea is that as most decisions are routine, they can be encoded into a
low-level structure (such as a digital circuit), whch only needs periodic updating,
perhaps to handle new lunds of problems. His approach was illustrated with the
celebrated PENGI system (Agre and Chapman, 1987). PENGI is a simulated corn-
puter game, with the central character controlled using a scheme such as that
outlined above.

Rosensche in and K a e t b l i n g - s i t u a t e d automata

Another sophsticated approach is that of Rosenschein and Kaelbling (see Rosen-
schein, 1985; Rosenschein and Kaelbling, 1986; Kaelbling and Rosenschein, 1990;
Kaelbling, 1991). They observed that just because an agent is conceptualized in
logical terms, it need not be implemented as a theorem prover. In their situated
automata paradigm, an agent is specified in declarative terms. This specification
is then compiled down to a digital machine, which satisfies the declarative speci-
fication. This digital machine can operate in a provably time-bounded fashon; it
does not do any symbol manipulation, and in fact no symbolic expressions are
represented in the machne at all. The logic used to specify an agent is essentially
a logic of knowledge:

[An agent] x is said to carry the information that p in world state s,
written s i= K (x , p) , if for all world states in whch x has the same
value as it does in s, the proposition p is true.

(Kaelbling and Rosenschein, 1990, p. 36)

An agent is specified in terms of two components: perception and action. Two pro-
grams are then used to synthesize agents: RULER is used to specify the perception
component of an agent; GAPPS is used to specify the action component.

RULER takes as its input three components as follows.

[A] specification of the semantics of the [agent's] inputs ('whenever
bit 1 is on, it is raining'); a set of static facts ('whenever it is raining,
the ground is wet'); and a specification of the state transitions of the
world ('if the ground is wet, it stays wet until the sun comes out'). The
programmer then specifies the desired semantics for the output ('if this
bit is on, the ground is wet'), and the compiler. . .[synthesizes] a circuit

96 Reactive and Hybrid Agents

whose output will have the correct semantics. . . . All that declarative
'knowledge' has been reduced to a very simple circuit.

(Kaelbling, 1991, p. 86)

The GAPPS program takes as its input a set of goal reduction rules (essentially
rules that encode information about how goals can be acheved) and a top level
goal, and generates a program that can be translated into a digital circuit in order
to realize the goal. Once again, the generated circuit does not represent or manip-
ulate symbolic expressions; all symbolic manipulation is done at compile time.

The situated automata paradigm has attracted much interest, as it appears to
combine the best elements of both reactive and symbolic declarative systems.
However, at the time of writing, the theoretical limitations of the approach are
not well understood; there are similarities with the automatic synthesis of pro-
grams from temporal logic specifications, a complex area of much ongoing work
in mainstream computer science (see the comments in Emerson (1990)).

Maes - agent network architecture
Pattie Maes has developed an agent archtecture in which an agent is defined as
a set of competence modules (Maes, 1989, 1990b, 1991). These modules loosely
resemble the behaviours of Brooks's subsumption archtecture (above). Each mod-
ule is specified by the designer in terms of preconditions and postconditions
(rather like STRIPS operators), and an activation level, which gives a real-valued
indication of the relevance of the module in a particular situation. The higher the
activation level of a module, the more likely it is that t h s module will influence
the behaviour of the agent. Once specified, a set of competence modules is com-
piled into a spreading activation network, in which the modules are linked to one
another in ways defined by their preconditions and postconditions. For example,
if module a has postcondition QI, and module b has precondition p, then a and
b are connected by a successor link. Other types of link include predecessor links
and conflicter links. When an agent is executing, various modules may become
more active in given situations, and may be executed. The result of execution may
be a command to an effector unit, or perhaps the increase in activation level of a
successor module.

There are obvious similarities between the agent network architecture and neu-
ral network archtectures. Perhaps the key difference is that it is difficult to say
what the meaning of a node in a neural net is; it only has a meaning in the con-
text of the net itself. Since competence modules are defined in declarative terms,
however, it is very much easier to say what their meaning is.

The Limitations of Reactive Agents
There are obvious advantages to reactive approaches such as Brooks's sub-
sumption archtecture: simplicity, economy, computational tractability, robust-

Hybrid Agents 97

!
ness against failure, and elegance all make such architectures appealing. But there
are some fundamental, unsolved problems, not just with the subsumption arch-
tecture, but with other purely reactive architectures.

If agents do not employ models of their environment, then they must have
sufficient information available in their local environment to determine an

1 acceptable action.

1 Since purely reactive agents make decisions based on local information
I (i.e. information about the agents current state), it is difficult to see how
I

such decision making could take into account non-local information - it
must inherently take a 'short-term' view.

It is difficult to see how purely reactive agents can be designed that learn
from experience, and improve their performance over time.

- One major selling point of purely reactive systems is that overall behaviour
emerges from the interaction of the component behaviours when the agent is
placed in its environment. But the very term 'emerges' suggests that the rela-
tionshp between individual behaviours, environment, and overall behaviour
is not understandable. This necessarily makes it very hard to engineer agents
to fulfil specific tasks. Ultimately, there is no principled methodology for
building such agents: one must use a laborious process of experimentation,
trial, and error to engineer an agent.

While effective agents can be generated with small numbers of behaviours
(typically less than ten layers), it is much harder to build agents that con-
tain many layers. The dynamics of the interactions between the different
behaviours become too complex to understand.

Various solutions to these problems have been proposed. One of the most popular
of these is the idea of evolving agents to perform certain tasks. This area of work
has largely broken away from the mainstream A1 tradition in whch work on, for
example, logic-based agents is carried out, and is documented primarily in the
artificial life (alife) literature.

5.3 Hybrid Agents

Given the requirement that an agent be capable of reactive and proactive
behaviour, an obvious decomposition involves creating separate subsystems to
deal with these different types of behaviours. This idea leads naturally to a class
of archtectures in whch the various subsystems are arranged into a hierarchy of
interacting layers. In this section, we will consider some general aspects of lay-
ered archtectures, and then go on to consider two examples of such architectures:
1nteRRaP and TouringMachines.

Petr
5.3 Hybrid Agents
Given the requirement that an agent be capable of reactive and proactive
behaviour, an obvious decomposition involves creating separate subsystems to
deal with these different types of behaviours. This idea leads naturally to a class
of archtectures in whch the various subsystems are arranged into a hierarchy of
interacting layers. In this section, we will consider some general aspects of lay-
ered archtectures, and then go on to consider two examples of such architectures:
1nteRRaP and TouringMachines.

